Atıksu Kaynaklı İsi Pompası ve Uygulamaları

Doç.Dr. Orhan Ekren Ege Universitesi-Güneş Enerjisi Enstitüsü

Atık Su ile Isıtma ve Soğutma Fırsatları Kolokyumu Yaşar Üniversitesi-2 Aralık 2015

- Introduction
- WWHP utilization
- Applications
 - Worldwide
 - Turkey
- Conclusion

Heating and cooling of the buildings occupy the largest portion of overall energy consumption in domestic use (more than <u>40%</u> in the EU)

We need to reduce this amount (40%) for the sustainable world. We can save energy by using more efficient heating/cooling systems.

Solution(?)

Efficient Heat Pump (HP) can be one of the solutions.

- Using efficient thermal sources
- Using variable speed compressor
- Renewable energy powered HP

HP is not new\ but using WW is more efficient than others.

Thermal Source	Source Temperature			
Thermal Source	Range (°C)			
	Winter	Summer		
Air (ambient)	-10 /15	26/45		
Ground Water	4/15	6/18		
Lake Water	0/15	10/20		
River Water	0/15	8/18		
Sea Water	4/15	10/25		
Ground	0/15	10/20		
Wastewater(WW)	9/14	26/29		

Why wastewater; because we are wasting energy through wastewater

- Daily <u>fresh water</u> utilization per person 217 liter/day
- Daily <u>wastewater</u> production per person 182 liter/day (%84 of fresh w.)
- In Izmir daily total wastewater \cong 600.000 m³/day
- For $\Delta T = 1^{\circ}C$ about $Q \cong 700$ MWh/day
- Wastewater temperatures in Izmir (<u>typical Mediterranean climate</u>)

Winter 9-14°C

Summer 26-29°C

 WW temperature changes depending on the amount of WW, region, WW source and season, etc.

Utilization of wastewater for HP;

Under the tap

In WW pipe line

In WW treatment plant

Europe heat pump utilization scenario until 2020 (Source: EHPA)

- Installed capacity: 35,6 GW_{th}
- Energy provided: 191,62 TWh_{th}
- RES integrated: 131,1 TWh
- GHG emission saved: 34,4 Mt
- Primary energy save: 80,2 TWh

Europe heat pump utilization 2030 targets:

Source: EHPA-http://www.ehpa.org/projects/heat-pump-panel/

Worldwide Applications of Wastewater Heat Pump(WWHP) systems

1-) Kakola WWHP Plant:

Located in Turku-Finland. District heating and district cooling from <u>treated</u> wastewater.

CO₂ reduction is 50.000 ton yearly

2-) Chicago Water Reclamation HP Plant:

Heating&cooling in the <u>reclamation</u> building. Collaboration with University of Illinois Chemical Eng. Dept. Average temp. of water 55 °F (12.7 °C)

3-) Amstetten WWHP Plant:

Located in Austria, established in 2012, about 400 single-family homes can be heated and cooled.

- WW from city channel for heat pump (heating and cooling)
 210 m district heating pipe (from channel to building)
- •1 heat pump of 230 kW
- COP 5.6
- Annual CO₂ reduction: 55 tons (72%)
- 85% more energy-saving than gas boilers

4-) Katri Vala WWHP Plant:

Located in Helsinki-Finland. District heating and cooling from <u>treated</u> wastewater. Connected population 800 000 person and wastewater flow 260 000 m³/h

- Heating power 5x18 MW (45-88 °C)
- Cooling power 5x12 MW (20-4 °C)
- Electrical motor cap. 6500 kW/10 kV
 Refrigerant R134a

Waste water heat exchangers

- Capacity 24 MW
- Temperature (wastewater) 12-6 °C
- Temperature (cooling) 4-10 °C

5-) Located in Bochum Germany. Pool heating. 200 m away from the WW line.

- Average 12 °C wastewater
- Heating to 50-55 °C
- Gas for heating decreased from 2952 MWh/a to 1,857 MWh/a by using WW
- CO₂ emissions reduced by 220 tons (37%)

WWHP System in the market;

M	odel		IWM-12B-34	IWM-12B-38	IWM-12B-51	IWM-12B-67
		KW	117.79	133.6	180.47	235.7
Performance		Kcal/h	101,300	114,900	155,200	202,700
		USRT	33.5	38	51.32	67.03
Power Consumption KW		32	38	50	58	
Power Supply		3Phase x 380V x 60Hz				
Compressor Capacity HP		HP	30	36	48	56
	Length			1,2	200	
Dimension	Height	mm		1,9	40	
	Depth			70	30	
Туре			Scroll type			
Compressor	Quantity	,	:	2	4	4
	Operation Me	ethod	Direct-on-line			
	Volume Control	%	0~100%			
	Refrigeration Ton	RT	10.7	12.36	16.48	19.68
Definent	Туре			R-	22	
Reingerant	Control Method		Inermostatic expansion valve Brazed Plate type			
Туре						
Heat Exchanger at Load-side	Circulation Volume	LPM	52.76	59.84	80.83	105.57
	Piping(IN/OUT)	A	4	0	5	0
Heat Exchanger	Туре		Spiral Tube Type			
at Heat source -side	Piping(IN/OUT)	A		1:	25	
Control	Temperature C	Control	Automatic inlet/outlet temperature control			
Control	Operation Co	ontrol	PCB			
Weigh	nt	kg	450	500	600	680
Operational Condition		Supply side (entry) temp to be 28°C; discharge side (exit) temp to be 80°C; Waste water temp to be 25°C				
The above specification may vary depending on the site and temperature conditions.						
The above specification may change without prior notice for further improvement.						

Wastewater Source Heat Pump Systems in Turkey

I- Fan-coil system, II- Air channel, III- Compressor, IV-Condenser/Evaporator, V- Expansion valve, VI- Evaporator/Condenser, VII- Wastewater HX, VIII- Wastewater line

In our WWHP System;

Air to Water HP	Specifications
Heating	~8 kW
Cooling	~5 kW
Air Side HX	Aluminum fin- copper pipe
Water HX	Plate type
PVT	5x190 W (electrical) and 460 W (thermal)DC compressor of HP partially powered by PVAuxiliary heating from PVT
WW HX	Special design

This project was funded by the national research council of Turkey (TUBITAK) while it was the first application in Turkey.
Our aim is to expand this application on a <u>city scale</u> in Izmir and also other cities in Turkey.

Energy Conversion and Management 88 (2014) 700-722

Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

A key review of wastewater source heat pump (WWSHP) systems

Arif Hepbasli^{a,*}, Emrah Biyik^a, Orhan Ekren^b, Huseyin Gunerhan^c, Mustafa Araz^a

^a Department of Energy Systems Engineering, Faculty of Engineering, Yasar University, 35100 Bornova, Izmir, Turkey

^bSolar Energy Institute, Ege University, 35100 Bornova, Izmir, Turkey

^cDepartment of Mechanical Engineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey

Energy and Buildings

Volume 104, 1 October 2015, Pages 215–232

Review

Heat exchanger applications in wastewater source heat pumps for buildings: A key review

Oguzhan Culhaª, Huseyin Gunerhan^b, Emrah Biyikº, Orhan Ekren^d, Arif Hepbasli^{c,} 📥 💌

^a Graduate School of Natural and Applied Sciences, Department of Mechanical Engineering, Ege University, 35100 Bornova, Izmir, Turkey

^b Department of Mechanical Engineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey

° Department of Energy Systems Engineering, Faculty of Engineering, Yasar University, 35100 Bornova, Izmir, Turkey

^d Solar Energy Institute, Ege University, 35100 Bornova, Izmir, Turkey

Received 16 March 2015, Revised 30 May 2015, Accepted 4 July 2015, Available online 8 July 2015

Thank you....

Contact:

Assoc. Prof. Dr. Orhan EKREN Ege University- Solar Energy Institute Bornova- Izmir- Turkey Email: orhanekren@gmail.com Phone:+90 533 525 64 67